Покажем, как были получены эти результаты, проведя решение задачи.
Решение. Для решения задачи используем классический закон преобразования (сложения) скоростей: скорость тела в неподвижной системе отсчета равна сумме скорости тела в подвижной системе отсчета и скорости самой подвижной системы отсчета: . Движение происходит вдоль оси ОХ и соответственно закон преобразования (сложения) скоростей записывается через проекции скоростей на ось ОХ:
.
1. В системе отсчета, связанной с Землей, скорости заданы в условии задачи и их проекции на ось ОХ соответственно равны: ;
м/с;
м/с.
2. В системе отсчета, связанной с мотоциклистом:
;
м/с = – 20 м/с;
;
м/с – 20 м/с = – 15 м/с;
;
м/с – 20 м/с = 0.
3. В системе отсчета, связанной с велосипедистом:
;
- 5 м/с = – 5 м/с;
;
м/с – 5 м/с = 15 м/с.
Сведения в таблицу полученных результатов дает наглядное представление об относительности скорости, о роли системы отсчета в определении последней.
Целесообразно показать, что все системы отсчета в кинематике равноправны, но следует выбирать такую систему отсчета, которая приводит к рациональному решению задачи. Для этого целесообразно решить одну и ту же задачу в разных системах отсчета.
Задача.
Тело брошено вертикально вверх со скоростью . Когда тело достигает верхней точки траектории, из того же места и с той же скоростью
вертикально вверх брошено второе тело. Через сколько времени от момента бросания второго тела произойдет встреча этих тел?
Задачу решают в системе отсчета, связанной с Землей, и в системе отсчета, связанной с одним из тел.
Решение 1. За начало отсчета координаты принимают место бросания тел на Земле. Ось OY направляют вертикально вверх. За начало отсчета времени принимают момент бросания первого тела (рис. 1).
Рис. 1
Записывают уравнение движения для первого тела:
;
;
;
;
.
Уравнение координаты для первого тела:
,
где – координата первого тела в любой, произвольный момент времени.
Другое по теме:
Особенности
формирования пространственно-временных представлений у старших дошкольников
массовых групп дошкольных учреждений
Главная особенность математики как учебного предмета заключается в том, что уже на элементарных уровнях она оперирует процессами далеко идущего абстрагирования и с идеальными объектами, представляющими результаты такого абстрагирования. Она формирует и исследует структуры, строящиеся из таких объек ...
Особенности формирования общения у детей с умственной отсталостью
По мнению Е.Н. Винарской функциональная способность нервных клеток проекционных полей коры у детей с умственной отсталостью сравнительно сохранна. Поэтому у детей с умственной отсталостью относительно сформирован эмоциональный аспект коммуникативно-познавательной способности, т.е. могут быть развит ...
Формирование ценностных ориентаций сельских школьников
Анализ ведущих тенденций социокультурного развития сельской молодежи, их жизненных ценностей, социальных ориентиров, отношения к базовым социальным ценностям предоставляет богатый материал для постановки и решения новых педагогических проблем. Сельская молодежь является перспективной группой сельск ...