Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите. Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практического использования общих правил в рукописях рассматривалось много примеров реального содержания, и излагался так называемый дощаный счет — прототип русских счётов. Подобным же образом была построена и первая арифметическая часть знаменитой «Арифметики» Л. Ф. Магницкого (1703). В геометрических рукописях, в большинстве своём преследовавших также практические цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.
Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Если, по мнению Петра, в молодую Академию должны были быть привлечены исключительно выдающиеся ученые, которые "совершенно и основательно дело свое разумеют", то математике в этом отношении особенно повезло.
Трудно сказать, кого следует считать первыми русскими математиками, но если иметь в виду людей, свободно владевших современным математическим анализом и писавших работы по этому предмету, то этими первенцами русской математики были, по-видимому, С. К. Котельников и С. Я. Румовский.
С. К. Котельников самостоятельным творчеством не занимался, хотя и написал нечто вроде основного курса математики, но ограничился изданием первого тома. Кроме того Котельников написал еще обстоятельный учебник геодезии.
Что касается Румовского, то он посвятил себя астрономии. Занимая в течение 30 лет кафедру астрономии, он много занимался теоретической и практической деятельностью. Он содействовал становлению русской картографии, напечатал каталог астрономических пунктов, организовав наблюдение за прохождением Венеры по диску солнца в 1769 году. Некоторые сочинения Румовского были посвящены чистой математике, как, например, "Сокращенная математика".
К самому концу XVIII столетия выдвигаются еще некоторые русские математики, так же, как и их предшественники, не внесшие еще серьезных вкладов в науку, но основательно изучившие математику, преподававшие ее в различных учебных заведениях и опубликовавшие ряд сочинений. Сюда относится в первую очередь Василий Иванович Висковатов. Висковатов опубликовал несколько мемуаров в изданиях Академии, а также руководство по элементарной алгебре. Он перевел и издал "Основы механики" Боссю и выпустил новое издание алгебры Эйлера.
Современником Висковатова был Семен Емельянович Гурьев, избранный в Академию в 1800 году. Он уже делает смелую попытку улучшать Евклида. В 1798 году он выпустил сочинение "Опыт усовершенствования элементов геометрии". Автор приобщается здесь к тому классу математиков, которых не удовлетворяют рассуждения Евклида.
В начале XIX столетия была создана особая комиссия для составления "Морского курса", т.е. ряда учебников для учащихся морского кадетского корпуса. Первый том был написан Висковатовым, а второй принадлежал Гурьеву. Но это сочинение представляет собой не просто заурядный учебник, а носит на себе печать самостоятельной мысли и стремление систематизировать и научно разработать материал.
Другое по теме:
Методика и организация обучения учащихся 7 класса вязанию крючком на основе
метода проектов
Целью преподавания раздела "Художественная обработка материалов" в 7 классе является развитие художественно-эстетических способностей и личностных качеств учащихся, формирование у них знаний и умений по художественной обработке материалов, т.е. по технике филейного вязания крючком. Учащим ...
Вынужденные колебания
Рассмотрим синусоидальную периодическую силу с некоторой определённой частотой. Если эта сила приложена к механической системе, то система будет колебаться по синусоидальному закону с той же частотой. Совпадение частоты изменения силы с частотой колебательного процесса характерно для вынужденных ко ...
Типология и структура уроков
Под уроком понимается занятие, проводимое учителем с постоянным составом учащихся одинакового уровня подготовки, объединенных в подгруппу класса или бригаду. Уроки чередуются, по твердому расписанию и включают в себя фронтальную, бригадную и индивидуальную работу школьников с применением разных мет ...