Новая педагогика » Содержательный анализ массовых школьных учебников по геометрии как форма методической и учебно-методической работы » Особенности современного аксиоматического подхода

Особенности современного аксиоматического подхода

Страница 1

В настоящее время аксиоматический подход понимается как «способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами теории, а все остальные предложения получаются как логические следствия аксиом».

Аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом применения аксиоматического метода вплоть до 19 в. была геометрическая система известная под названием «Начала» Евклида (ок. 300 до н.э.). Во времена Евклида не вставал еще вопрос об описании логических средств, применяемых для извлечения содержательных следствий из аксиом, в системе Евклида уже достаточно четко проведена идея получения всего основного содержания геометрической теории только дедуктивным путем из некоторого относительно небольшого числа утверждений — аксиом, истинность которых представлялась наглядно очевидной [21].

В работах Евклида пятая аксиома о параллельности прямых была сформулирована как теорема: предположим, что есть прямая и точка , не лежащая на этой прямой. Опустим перпендикуляр из точки А на прямую . Всякая прямая пересекающая этот перпендикуляр в точке под не прямым углом , пересекает прямую . Имея такую аксиому Евклид доказывает теорему, что если , то две прямые параллельны. Так как угол равный 90 единственный, то и прямая параллельная данной - одна.

После доказательства эквивалентности пятой аксиомы и теоремы о параллельности двух прямых, стали пользоваться формулировкой теоремы как аксиомой. Но, даже в такой формулировке математики не верили в незыблемость пятой аксиомы. Показав, что следствия, полученные из отрицания пятой аксиомы и всех теорем, выводимых на ее основе, не противоречивы, Лобачевский тем самым показал независимость пятой аксиомы.

Открытие в нач. 19 в. неевклидовой геометрии Н. И. Лобачевским и Я. Больяи явилось толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный, и, казалось бы, единственный «объективно истинный» V постулат Евклида о параллельных прямых, его отрицанием, можно развить чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков 19 в. обратить особое внимание на дедуктивный способ построения математических теорий, что повлекло за собой возникновение связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла теория доказательств как основной раздел современной математической логики.

Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более менее отчетливой форме уже в 19 веке. Уточнение основных понятий анализа и сведение более сложных (хотя и более очевидных интуитивно) понятий к простейшим логическим схемам, а также открытие неевклидовых геометрий, стимулировало оформление требований к любой системе аксиом.

Страницы: 1 2 3


Другое по теме:

Организация и содержание коррекционно-педагогической работы с младшими школьниками в ходе формирующего эксперимента
Цель: повышение эффективности преодоления нарушений письма у младших школьников при использовании в коррекционной работе нейропсихологических методов. Коррекционная работа по устранению дисграфии проводилась со всеми учащимися как контрольной, так и экспериментальной групп. Работа по развитию высши ...

Понятия «монологического высказывания» как средства общения
Прежде чем перейти к рассмотрению способов совершенствования речевых умений, нам представляется логичным рассмотреть понятие монологического высказывания. Как указывает Е.И.Пассов, монологическая речь представляет собой одну из форм общения, которая реализуется не только в устной, но и в письменной ...

Теоретические основы организации внеклассной работы в начальных классах общеобразовательной школы
Процесс совершенствования математических знаний, способствующий развитию школьника, должен осуществляться как на уроках, так и во внеурочное время. Поскольку целенаправленная внеклассная работа способствует более прочному и сознательному усвоению изученного на уроке материала, воспитывает интерес к ...

Категории

Copyright © 2025 - All Rights Reserved - www.edubrilliant.ru